A ug 1 99 9 Hamiltonian derivation of a detailed fluctuation theorem

نویسنده

  • C. Jarzynski
چکیده

We analyze the microscopic evolution of a system undergoing a far-from-equilibrium thermodynamic process. Explicitly accounting for the degrees of freedom of participating heat reservoirs, we derive a hybrid result, similar in form to both the fluctuation theorem, and a statement of detailed balance. We relate this result to the steady-state fluctuation theorem, and to a free energy relation valid far from equilibrium.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Gallavotti-Cohen Type Symmetry in the Large Deviation Functional for Stochastic Dynamics

We extend the work of Kurchan on the Gallavotti-Cohen fluctuation theorem, which yields a symmetry property of the large deviation function, to general Markov processes. These include jump processes describing the evolution of stochastic lattice gases driven in the bulk or through particle reservoirs, general diffusive processes in physical and/or velocity space, as well as Hamiltonian systems ...

متن کامل

ar X iv : h ep - t h / 99 08 13 8 v 1 2 0 A ug 1 99 9 On The Arnold Conjecture And The Atiyah - Patodi - Singer Index Theorem

The Arnold conjecture yields a lower bound to the number of periodic classical trajectories in a Hamiltonian system. Here we count these trajectories with the help of a path integral, which we inspect using properties of the spectral flow of a Dirac operator in the background of a Sp(2N) valued gauge field. We compute the spectral flow from the Atiyah-Patodi-Singer index theorem, and apply the ...

متن کامل

ha o - dy n / 99 10 01 8 v 2 3 1 A ug 2 00 0 Response Function of an Irregular Oscillator

Properties of the response functions for a two-dimensional quartic oscillator are studied based on the diagonalization of the Hamiltonian in a large model space. In particular, response functions corresponding to a given momentum transfer are studied for different values of the coupling parameter in the Hamiltonian. The latter controls regular or chaotic nature of the spectra and eigenstates of...

متن کامل

ar X iv : h ep - t h / 99 08 13 8 v 2 2 5 A ug 1 99 9 On The Arnold Conjecture And The Atiyah - Patodi - Singer Index Theorem

The Arnold conjecture yields a lower bound to the number of periodic classical trajectories in a Hamiltonian system. Here we count these trajectories with the help of a path integral, which we inspect using properties of the spectral flow of a Dirac operator in the background of a Sp(2N) valued gauge field. We compute the spectral flow from the Atiyah-Patodi-Singer index theorem, and apply the ...

متن کامل

ar X iv : m at h - ph / 9 90 80 08 v 1 6 A ug 1 99 9 The Flux - Across - Surfaces Theorem for a Point Interaction Hamiltonian

The flux-across-surfaces theorem establishes a fundamental relation in quantum scattering theory between the asymptotic outgoing state and a quantity which is directly measured in experiments. We prove it for a hamil-tonian with a point interaction, using the explicit expression for the propaga-tor. The proof requires only assuptions on the initial state and it covers also the case of zero-ener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999